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Abstract This paper approaches the problem of modeling optimization problems
containing substructures involving constraints on sequences of decision variables.
Such constraints can be very complex to express with Mixed Integer Programming
(MIP). We suggest an approach inspired by global constraints used in Constraint
Programming (CP) to exploit formal languages for the modeling of such substruc-
tures with MIP. More precisely, we first suggest a way to use automata, as the CP
regular constraint does, to express allowed patterns for the values taken by the
constrained sequence of variables. Secondly, we present how context-free grammars
can contribute to formulate constraints on sequences of variables in a MIP model.
Experimental results on both approaches show that they facilitate the modeling, but
also give models easier to solve by MIP solvers compared to compact assignment
MIP formulations.
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1 Introduction

Given a sequence of n decision variables Xi, each with a finite domain Di, i =
1, . . . , n, a constraint on such a sequence is a set of n-tuples L ⊆ D1 × . . . × Dn

called a language. The constraint over the sequence is satisfied when the tuple
〈X1, . . . , Xn〉 belongs to the language L. Such constraints arise in many optimization
and satisfaction problems. In this paper, we focus on shift scheduling problems,
where a sequence of activities (work activities, break, lunch, rest) must be assigned to
a set of employees. In these problems, the difficulty lies in building shifts that comply
with work regulations such as legal placement of breaks and lunches, and transitions
between activities.

In this paper, we study how to model constraints on sequences of decision
variables using a Mixed Integer Programming (MIP) framework. Our approach
is inspired by global constraints in Constraint Programming (CP) that use formal
languages. First, we suggest using automata to represent constraints on sequences of
decision variables, as the CP regular [25] constraint does. From the automaton,
we automatically generate a network flow model that can be included into any
MIP model involving constraints on sequences of decision variables. Second, we
propose a way to use context-free grammars instead of automata to describe the
constraints on sequences of decision variables. To apply this to MIP, we use an and/or
graph structure associated to the CP grammar constraint [27, 28, 31] and derive the
associated linear constraints.

These approaches allow MIP to benefit from CP expressiveness in modeling,
by automatically generating MIP models from intuitive modeling tools, such as
automata and context-free grammars. Furthermore, our experimental results on a
shift scheduling model show that they facilitate the modeling, but also give models
easier to solve by MIP solvers compared to compact assignment MIP formulations.

The paper is organized as follows. In Section 2, we present a literature review on
shift scheduling problems. Section 3 presents some background material on formal
languages and their use in CP. In Sections 4 and 5, we introduce our two approaches
to model constrained sequences of decision variables: the MIP regular and the
MIP grammar constraints respectively. In Section 6, we show the equivalence of the
two resulting MIP models when the grammar encodes a regular language. Finally, in
Section 7, we present numerical results obtained by solving different formulations of
a particular shift scheduling problem.

2 Shift scheduling problems

Given a planning horizon divided into periods of equal length, a set of employees and
a demand for different activities (work activities, lunch, break, rest) at each period,
the shift scheduling problem consists of assigning an activity to each employee at
each period in such a way that the demands are met, while optimizing an objective
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and satisfying several rules (including some that can be expressed as constraints on
sequences of decision variables). In this context, a shift is a sequence of activities
corresponding to a continuous presence at work (that may include lunch and break,
but not rest periods). A schedule (also called a tour) is a sequence of shifts and rest
periods, over the whole planning horizon, that satisfies all the rules associated to an
employee. A pattern is a sequence of activities that respects some of the rules over a
subset of the planning horizon.

Mathematical programming models for shift scheduling problems can be divided
into three categories (see [15, 16] for recent surveys on shift scheduling and re-
lated problems): the compact assignment formulations, the explicit set covering
formulations and the implicit set covering formulations. Compact assignment for-
mulations [4, 5, 20] use decision variables to assign activities to each employee at
each period. In the explicit set covering formulations [11], the decision variables
represent all possible shifts and the problem is to select a subset of them which
covers the demands. The number of shifts being potentially large, different methods
were proposed to select good subsets. Most notably, the column generation method
efficiently solves this kind of problems (see for instance [8, 13, 21]).

Implicit set covering formulations were introduced and developed by
Moondra [24], Bechtold and Jacobs [6, 7], Thompson [33], Aykin [2, 3], and
Rekik et al. [29, 30]. In these models, shift types, specified by starting and ending
times, are not directly associated with break positions at first. For instance, one can
independently decide how many employees are going to work from 8am to 4pm
and how many employees are going to be on break at 10am. Additional constraints,
named forward and backward constraints, are necessary to guarantee the existence
of a valid schedule which can later be reconstructed with a polynomial-time
algorithm. The main advantage of this approach is that the number of decision
variables is significantly reduced compared to explicit set covering formulations.

Network flow formulations were used for different generalizations of shift
scheduling problems. Çezik et al. [9] propose a MIP formulation for the Weekly Tour
Scheduling Problem. It handles the weekly horizon by combining seven daily shift
scheduling models in a network flow framework, which handles the demands for each
day. Millar and Kiragu [23] and Ernst et al. [14] use a layered network to represent
allowed transitions between a set of a priori patterns (series of nights for instance)
to develop complete schedules. Sodhi [32] studies the problem of assigning a type
of shift (day, evening, night) to each day of a planning horizon of several weeks.
The model combines predefined weekly patterns to create a complete schedule by
using a directed graph with nodes representing allowed weekly patterns and arcs
corresponding to allowed week-to-week transitions between these patterns. A MIP
model is then used to find an optimal cyclic path to cover all the weeks of the
schedule.

In this paper, we present two different generic ways to capture and model
a large set of rules that can be expressed as constraints on sequences of deci-
sion variables. These two modeling approaches are not limited to single activity
scheduling problems like implicit formulations are. Contrary to explicit and net-
work flow formulations, they do not required a priori enumerations of shifts or
patterns. Moreover, the expressiveness of automata and grammars allows to model
complex rules naturally, which is not always the case with compact assignment
models.
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3 Background material

Before we define our modeling approaches, we introduce important definitions
related to formal languages theory (for more details on the subject, see Hopcroft
et al. [17]).

3.1 Automata and the CP regular constraint

A deterministic finite automaton (DFA) is described by a 5-tuple � = 〈
Q, �,

δ, q0, F
〉

where:

• Q is a finite set of states;
• � is an alphabet;
• δ : Q × � → Q is a transition function;
• q0 ∈ Q is the initial state;
• F ⊆ Q is a set of final states.

An alphabet is a finite set of symbols. A language is a set of words, formed by symbols
over a given alphabet. Regular languages are languages recognized by a DFA. A
word is recognized by a DFA if by processing its symbols one by one from the initial
state using the transitions, we find ourselves in a final state after we process the last
symbol.

A non-deterministic finite automaton (NFA) distinguishes itself from a DFA by
its set of transitions δ. In fact, a transition is no longer a function but a set of triplets:
δ ⊆ Q × � × Q. A transition 〈q1, j, q2〉 ∈ δ indicates that reading the symbol j from
state q1 can lead to state q2. However, it is possible that another transition from q1,
〈q1, j, q3〉 ∈ δ, leads to another state q3, hence the non-determinism of the automaton.
DFAs and NFAs strictly encode the same languages. However, NFAs can encode
some languages with exponentially fewer states than DFAs.

Example 1 Let � = {a, b , c} be an alphabet. �, represented in Fig. 1, is a DFA
recognizing a regular language over this alphabet. This DFA recognizes, for instance,
the words c, cccc, aba, aabba, but does not recognize ac and ab .

Pesant [25] introduced the constraint Regular([X1, . . . , Xn], �) which is satisfied
if the automaton � recognizes the sequence of decision variables X1, . . . , Xn.

Fig. 1 DFA � with each state
shown as a circle, each final
state as double circle, and each
transition as an arc 1 2 3 4

5

a b a

aba

c c
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3.2 Context-free grammars and the CP grammar constraint

A context-free grammar G is a tuple 〈�, N, S, P〉 where � is the alphabet of
characters, also called the terminal symbols, N is a set of non-terminal symbols, S ∈ N
is the starting symbol, and P is a set of productions of the form A → w where A ∈ N
is a non-terminal symbol and w is a sequence of terminal and non-terminal symbols.
We use capital letters for non-terminal symbols and lower case letters for terminal
symbols. A parsing tree is a tree where each leaf is labeled with a terminal and
each inner-node is labeled with a non-terminal. The root is labeled with the starting
symbol S. The children of a node A, when listed from left to right, form a sequence
w such that the production A → w belongs to the grammar. A grammar recognizes a
sequence if and only if there exists a parsing tree where the leaves, when listed from
left to right, reproduce this sequence. Any grammar can be written in its Chomsky
normal form i.e., any production either generates two non-terminals or one terminal.
A context-free language is the set of sequences accepted by a context-free grammar.

Context-free grammars are more expressive than automata since any regular
language can be encoded with a context-free grammar but not every context-free
language can be encoded with an automaton [17].

Quimper and Walsh [27], and Sellmann [31] introduced the constraint
grammar([X1, . . . , Xn], G) which is satisfied if the grammar G recognizes the se-
quence of decision variables X1, . . . , Xn.

Given a context-free grammar G, Quimper and Walsh [28] build a Boolean
formula that returns true for every sequence of a given length n recognized by the
grammar and false for any other sequence. This Boolean formula is encoded in an
and/or graph where each leaf corresponds to an assignment Xi = t that can either
be true or false. An or-node is true if one of its children is true. An and-node is true
if all its children are true. The root is true if the grammar G accepts the sequence
encoded by the leaves. Their algorithm (see Algorithm 1) builds the and/or graph
and is based on the CYK parser [10, 19, 34] that takes as input a grammar written in
its Chomsky normal form. The and/or graph embeds every possible parsing tree of a
grammar. Each or-node N(A, i, j) in the graph is assigned to true if the non-terminal
A produces the sub-sequence Xi, . . . , Xi+ j−1. The nodes set to true in a solution form
a parsing tree. The and/or graph structure will be used in Section 5 to generate a MIP
model from a given grammar. Example 2 describes the and/or graph that recognizes
any word of length n = 3 defined by a simple grammar.

Example 2 Consider the following simple grammar taken from [28].

S → AB A → AA | a B → BB | b

Algorithm 1 builds the graph depicted in Fig. 2.

Quimper and Walsh [28] show how context-free grammars can be enhanced by
imposing some constraints on a production A → BC. For instance, a non-literal can
be constrained to produce a sequence of a given length or only be produced at given
positions. Such constraints simply remove some nodes in the and/or graph.
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4 MIP regular

The use of automata to express constraints on values taken by sequences of variables
is very useful in CP. Equivalent constraints can be very complex to formulate in
a MIP model. The aim of our work in this section is precisely to propose a way

Fig. 2 And/or tree
constructed by Algorithm 1 on
the grammar of Example 2 and
a sequence of length n = 3

N (S, 1, 3)

N (A, 1, 2) N (B, 2, 2)

N (A, 1, 1) N (A, 2, 1) N (B, 3, 1)

N (a, 1, 1) N (a, 2, 1) N (b,2, 1) N (b,3, 1)

N (B, 2, 1)
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to formulate MIP models by using automata. Our approach is inspired by the CP
regular constraint [25].

First, we introduce the following 0-1 decision variables:

xij =
{

1, if position i ∈ I of the sequence is assigned to value j ∈ Di,
0, otherwise,

where I = {1, 2, . . . , n} represents the set of positions in the sequence and Di, the set
of values that can be assigned to this position.

To obtain a graph structure representing all sequences of length n recognized by
an automaton, we use the following property of regular languages:

• Let L1 and L2 be two regular languages. Then L1 ∩ L2 is a regular language.

Given this property, if we have an automaton A1 that encodes a set of constraints
on the values taken by a sequence of variables and an automaton A2 that encodes
the language specifying all sequences of length n on the same set of values, the
conjunction of A1 and A2 results in an automaton A recognizing all sequences of
length n recognized by A1. Automaton A has a special structure. It is a directed
layered graph, with n + 1 layers and no cycles. Each layer potentially contains all
states of A1. Let N1, N2, . . . , Nn+1 be the sets of states of each layer. We note that
N1 has a single element, the initial state of A1, and that Nn+1 is a subset of the set of
final states of A1. Pesant [25] shows how to build A.

Since A recognizes all sequences of length n recognized by A1, our modeling ap-
proach uses this structure to derive a network flow formulation. The correspondence
between the automaton A and the graph G used for the network flow model is direct.
First, a state k ∈ Ni, 1 ≤ i ≤ n + 1, is a node in G and a transition in A is an arc in G.
A transition between a state k ∈ Ni and a state l ∈ Ni+1 labeled with symbol j defines
a unique arc in G representing the value j assigned to position i in the sequence. For
all such arcs in G, we have a flow variable fijkl (see [1] for details on network flow
theory). Notice that if A1 is a DFA, the index l is not needed, but our approach also
applies to an NFA. Finally, we identify s, the unique element of N1, as the source
node, and we link each node k ∈ Nn+1 to a sink node t with an arc labeled with the
flow variable f(n+1)kt. We also define a 0-1 variable w that specifies if the constraint
is active or not. The value of w corresponds to the amount of flow (0 or 1) entering
and leaving the graph.

Example 3 Let � be the automaton of Example 1 represented in Fig. 1. Let π5 be the
automaton depicted in Fig. 3 representing all sequences of length n = 5 on alphabet
� = {a, b , c}. Then, Fig. 4 presents automaton A = � ∩ π5 and Fig. 5, the associated
graph G.

1 2 3 4 5 6
c c c c c

b b b b b

a a a a a

Fig. 3 Automaton π5 recognizing all sequences of length 5 on alphabet � = {a, b , c}
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Fig. 4 Automaton
A = � ∩ π5 1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

a

c a

b b b

a

b b

a a a

a a

c c c c

The network flow problem on G is a set of linear constraints, the flow conservation
equations, ensuring that for each node in the graph, the amount of flow entering and
leaving the node is the same. An arc from k ∈ Ni to l ∈ Ni+1 with label j is defined as
a quadruplet (i, j, k, l). For each node k ∈ Ni, we introduce the sets of outgoing and
incoming arcs:

�+
ik = {

(i, j, k, l)|l ∈ Ni+1 and < k, j, l >∈ δi
}
,

�−
ik = {

(i − 1, j, l, k)|l ∈ Ni−1 and < l, j, k >∈ δi−1
}
, 0

where δi is the set of transitions at layer i, 1 ≤ i ≤ n + 1. The MIP formulation of the
regular constraint is then written as follows:

∑

( j,l)|(1, j,s,l)∈�+
1s

f1 jsl = w, (1)

∑

( j,l)|(i−1, j,l,k)∈�−
ik

f(i−1) jlk =
∑

( j,l)|(i, j,k,l)∈�+
ik

fijkl,∀i ∈ {2, . . . , n} , k ∈ Ni, (2)

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

f1a12
w

t

f1c15

f2a22

f2b23

f3a22

f2c55 f3c55 f4c55 f5c55 f65t

f64t

w

f3b23 f4b23

f3b33 f4b33

f3a34 f4a34 f5a34

f4a44 f5a44

Fig. 5 Graph G associated to automaton A
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∑

( j,l)|(n, j,l,k)∈�−
(n+1)k

fnjlk = f(n+1)kt,∀k ∈ Nn+1, (3)

∑

k∈Nn+1

f(n+1)kt = w, (4)

xij =
∑

(k,l)|<k, j,l>∈δi

fijkl, ∀i ∈ {1, . . . , n} , j ∈ Di, (5)

fijkl ∈ {0, 1} ∀i ∈ {1, . . . , n} ,< k, j, l >∈ δi, (6)

f(n+1)kt ∈ {0, 1} ∀k ∈ Nn+1. (7)

Constraints (5) link the decision variables x with the flow variables. Note that in
the case where the MIP regular constraint is the only constraint in the model,
the decision variables x and constraints (5) are not needed in the model. Without
these, the resulting model is a pure network flow formulation that reduces to the
determination of a path between s and t in an acyclic network, which can be solved
very efficiently by a specialized algorithm [1]. In the case where the MIP regular
constraint is part of a larger model, constraints (5) allow to formulate the rest of the
model using the decision variables x.

The number of variables in the MIP regular model is O(n|T|) where n is the
sequence length and |T| is the number of transitions in automaton A1. The number
of contraints is O(n|Q|) where |Q| is the number of states in automaton A1.

Thus, introducing a MIP regular constraint to a MIP model induces the addition
of a set of flow conservation linear constraints (1)–(4) and linking constraints (5) to
the model. We use a procedure with the following signature:

AddMIPRegular(�(Q, �, δ, q0, F), n, x, w, M),

to add the linear constraints associated with a MIP regular constraint to a model
M, given a DFA �, the decision variables x subject to the constraint, the length of the
sequence n formed by these variables and the amount of flow w entering the graph.

The following lemma states that the set of solutions to constraints (1) to (4)
corresponds to the set of words recognized by automaton A.

Lemma 1 Let A be an automaton, as depicted in Fig. 4, defined by a set of states and
transitions. Let G be the graph associated with A, as depicted in Fig. 5, defined by a set
of nodes and arcs. A solution to the flow conservation equations (1) to (4) with w = 1
corresponds to a word recognized by automaton A.

Proof A solution f to the flow conservation equations (1) to (4) with w = 1 forms a
path pG in graph G. By construction, there is a corresponding path pA in A starting
from the initial state and ending at a final state. Following path pA in automaton
A is equivalent to process a word, letter by letter, by taking the transition labeled
with the letter corresponding to the arc from path pG at position i = 1, then i = 2,
and so on until i = n. Since a final state is reached at the end of the process, this
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word is recognized by automaton A. Conversely, a word recognized by automaton
A corresponds to a path in the automaton. By definition, for each transition in A,
there is an arc in graph G associated with a 0-1 variable. We can build a solution f
by setting to one the variables associated with the transitions along this path, as well
as the variable linking the final state reached by the path to the sink node, and all the
other variables to zero. This solution satisfies constraints (1) to (4) since it forms a
path in graph G. 
�

5 MIP grammar

As we did with regular languages, we derive a MIP that accepts any sequence
belonging to a context-free language. The model directly comes from the and/or
graph presented in Section 3.2. Each node N(A, i, j) in the and/or graph corresponds
to a MIP 0-1 variable X(A, i, j). A leaf node N(t, i, 1) is associated to the MIP 0-1
decision variable xit. The variable xit is equal to one if and only if the node N(t, i, 1)

is true. A leaf node is considered as an or-node in the graph. In the following, the
notations Nor and Nand refer to general or-node and and-node, while the notations
Xor and Xand refer to their associated 0-1 variables. As we did for the MIP regular
constraint, we introduce a 0-1 variable w that specifies if the constraint is active.
When w = 0, every variable xit must be assigned to zero.

The constraints on the variables of the MIP depend on the relationship between
the corresponding nodes in the and/or graph. There is one significant difference
between the MIP and the and/or graph. When there exist more than one parsing
tree for a sequence, all nodes in the and/or graph that belong to at least one parsing
tree are set to true, while for the MIP, one parsing tree is arbitrarily selected and
all its variables are set to one. All other variables, including those that belong to
other parsing trees, are set to zero. Choosing an arbitrary parsing tree simplifies the
MIP without changing the solution space. Indeed, only one parsing tree is necessary
to prove that a sequence belongs to a context-free language. We now present the
constraints representing a MIP of a grammar.

Let Nor be an or-node other than a leaf node. Let c(Nor) be its children’s label.
The following constraint forces Xor to be equal to one if exactly one of the variables
associated to the children of Nor is equal to one:

Xor =
∑

n∈c(Nor)

Xand,n. (8)

A node belongs to a parsing tree only if exactly one of its parent belongs to the
parsing tree. Let Nor be an or-node and p(Nor) be its parents label. We have the
following equality:

Xor =
∑

n∈p(Nor)

Xand,n. (9)

Note that these constraints imply those specifying that if an and-node Nand is
true, then its children, c(Nand), are also true. Indeed, for each m ∈ c(Nand), we have
Xor,m = ∑

n∈p(Nor)
Xand,n ≥ Xand.
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Finally, we force the root of the directed acyclic graph (DAG) to be assigned to
one if and only if the constraint is active, i.e., when w = 1:

X(S, 1, n) = w. (10)

The number of variables in the MIP grammar model is equal to the number of
nodes in the graph, which is O(n3|G|) where n is the sequence length and |G| is the
number of productions in grammar G. The number of constraints is equal to twice the
number of or-nodes which is O(n2|G|). The following lemma is a first step towards
establishing the correspondence between a solution satisfying constraints (8)–(10)
and a word recognized by the grammar.

Lemma 2 Constraints (8), (9), and (10) are satisfied if and only if the and/or graph
evaluates to true.

Proof Observe that all parents and children of an or-node are and-nodes and all
parents and children of an and-node are or-nodes. And-nodes have a unique parent.

(=⇒) Suppose there exists a valid assignment of every node in the and/or graph
such that the root is assigned to true. Quimper and Walsh [28] showed that
there exists at least one parsing tree whose nodes in the graph are assigned
to true. We arbitrarily select one such parsing tree and set to one every
variable whose corresponding or-node belongs to the parsing-tree. Consider
an or-node in the parsing tree. Among all its children assigned to true, we
arbitrarily select one and-node and set its corresponding variable to one. All
unassigned variables remaining in the MIP are set to zero. Constraint (8)
is satisfied since an or-node is set to one if exactly one child is set to one.
Constraint (9) is also satisfied since in the parsing tree, each node has only
one parent (except for root). Finally, constraint (10) is satisfied since the root
node is set to one.

(⇐=) Suppose the MIP is feasible. For every variable assigned to one, we assign the
corresponding node to true. By constraint (8), every or-node has one child
set to true. By constraint (9), every or-node has one parent set to true. This
parent is an and-node that has either one or two children. In either case,
constraint (9) ensures that a node that has a parent set to true is also set to
true. Therefore, the children of an and-node set to true are also set to true.
Finally, by constraint (10), the root node of the tree is set to true. We proved
that every variable set to one in the MIP have its corresponding node set
to true in the graph. We now prove that values set to zero in the MIP can
be assigned to Boolean values in the graph. We set to false every leaf node
whose corresponding MIP variable is set to zero. Every unassigned node is
evaluated using a bottom-up approach, i.e., and-nodes are assigned to true if
both children are true and or-nodes are assigned to true if at least one child is
true. Therefore, we obtain a valid assignment of Boolean values in the and/or
graph. 
�

Since Quimper and Walsh [28] proved that the grammar recognizes a sequence if
and only if the and/or graph evaluates to true, we conclude that the grammar accepts
only the sequences satisfying the MIP.
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Theorem 1 Constraints (8), (9), and (10) are satisfied if and only if the grammar
recognizes the sequence s for which X(s[i], i, 1) = 1.

6 Comparison between MIP regular and MIP grammar

It is interesting to compare MIP regular obtained from an automaton � with
the MIP grammar obtained from a context-free grammar G that encodes the same
language recognized by �. We recall how to automatically generate the grammar G
from the transitions of the automaton �. The states of the automaton form the set
of non-terminals of the grammar and the alphabet symbols form the set of terminals.
The starting non-terminal of the grammar is the initial state of the automaton. Each
transition in the automaton is associated with a production in the grammar as follows.
If S1 is the state at the beginning of a transition, S2 is the state at the end of this
transition, and α is the associated alphabet symbol, then the production S1 → αS2 is
added to the grammar. If S2 is a final state then the production S1 → α is also added
to the grammar.

The and/or graph produced with such a grammar has the following properties. The
only productions having two literals on their right-hand side have the form S1 → αS2,
i.e., a non-terminal produces a terminal followed by a non-terminal. The parsing trees
produced by this grammar are therefore unbalanced trees where the left child of a
node is necessarily a leaf labeled with a terminal symbol. For instance, the production
S1 → αS2 creates in a parsing tree a node S1 with a left-child α and a right-child S2.
The or-nodes in the graph created from a sequence of n characters are either of the
form N(P, t, n − t + 1) for the inner-nodes or the form N(α, t, 1) for the leaf nodes.

The and/or graph associated to a regular grammar has a similar structure to the
layered graph used to model the MIP regular. The or-node N(P, t, n − t + 1) in
the and/or graph corresponds to the node P ∈ Nt in the layered graph of the MIP
regular. An and-node with left child N(α, t, 1), right child N(Q, t + 1, n − t) and
parent N(P, t, n − t + 1) corresponds to the arc (t, α, P, Q) in the layered graph of
the MIP regular. Figure 6 shows the relation between the arc (4, b , 2, 3) from the
layered graph of MIP regular depicted in Fig. 5 and the corresponding nodes in the
and/or graph.

The similarities between both graphs lead to similarities in the corresponding
MIPs. Let Ot,A be the 0-1 variable associated to the inner node N(P, t, n − t + 1)

and xt,α be the 0-1 variable associated to the leaf node N(α, t, 1). Let At,P,Q,α be the
0-1 variable associated to an and-node whose parent is N(P, t, n − t + 1), whose left
child is the leaf node N(α, t, 1), and whose right child is the node N(Q, t + 1, n − t).
Figure 6 shows some nodes in an and/or graph and their corresponding variables.

Equations 8 and 9, when applied on the inner node N(P, t, n − t + 1), lead to the
two following equations:

Ot,P =
∑

Q,α

At,P,Q,α, (11)

Ot,P =
∑

Q,α

At+1,Q,P,α. (12)
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Fig. 6 The relation between the arc (4, b , 2, 3) from the layered graph of MIP regular depicted in
Fig. 5 and the corresponding nodes in the and/or graph. The label of each node is written on the left
and the associated 0-1 variable on the right

These two equations lead to the following one, which is strictly equivalent to the
flow conservation constraint (2) in the MIP regular:

∑

Q,α

At,P,Q,α =
∑

Q,α

At+1,Q,P,α. (13)

Equation 9, when applied on the leaf node N(P, t, 1), gives the following equation,
which is equivalent to constraint (5) in the MIP regular:

xt,α =
∑

P,Q

At+1,P,Q,α. (14)

Constraints (8) and (10) on the root node N(S, 1, n) lead to the following equa-
tions, which are equivalent to constraint (1):

w = O1,S =
∑

Q,α

A1,S,Q,α. (15)

Therefore, we have shown the following result:

Theorem 2 The MIP grammar model resulting from a grammar encoding a regular
language is equivalent to the MIP regular model encoding the same language.
Moreover, the LP relaxations of the two models are also equivalent.

The equivalence of the LP relaxations follows from the fact that the equivalence
between the two MIP models is derived from a series of linear equations which are
true whether the variables are binary or continuous. Although both the MIP models
and their LP relaxations provide the same optimal values, the two models show some
differences. For instance, notice that we have a 0-1 variable for each or-node in the
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MIP grammar, while there is no such variable associated to the states of the layered
graph in the MIP regular.

7 Case study

To evaluate the quality of our modeling approaches for constrained sequences of
decision variables, we present computational results on complete shift scheduling
problems described in [12]. We compare our models to a compact assignment model.
Since implicit formulations are limited to modeling single work activity problems, we
did not experiment with such models. We did not implement explicit formulations
neither, as the number of variables would be excessive (for instance, there are
67,752,783 variables for two work activities in our case study).

7.1 Problem definition

The benchmarks are randomly generated, but are based on rules from a real-
world shift scheduling problem. The demand curves come from a retail store. The
objective is to create an optimal employee schedule for one day that satisfies the
work regulation rules and the demands for each work activity.

The one day planning horizon is decomposed into 96 periods of 15 minutes each.
We introduce the following notations before we define the problem:

• E : set of available employees;
• W : set of work activities;
• J : set of all activities (J = W ∪ {l, p, o})

where l = lunch, p = break, o = rest;
• I = {1, 2, . . . , n} : set of periods. I′ = I \ {1};
• Fi ⊆ J: set of activities that are not allowed to be performed at period i ∈ I;
• cij: cost for an employee to cover an activity j ∈ W \ Fi at period i ∈ I.

Work Regulation Rules

1. Activities j ∈ Fi are not allowed to be performed at period i ∈ I.
2. If an employee is working, he must cover between 3 hours and 8 hours of work

activities.
3. If a working employee covers at least 6 hours of work activities, he must have

two 15 minute breaks and a lunch break of 1 hour.
4. If a working employee covers less than 6 hours of work activities, he must have

a 15 minute break, but no lunch.
5. If performed, the duration of any activity j ∈ W is at least 1 hour (4 consecutive

periods).
6. A break (or lunch) is necessary between two different work activities.
7. Work activities must be inserted between breaks, lunch and rest stretches.
8. Rest activities have to be assigned at the beginning and at the end of the day.

Demand Covering

1. The required number of employees for activity j ∈ W \ Fi at period i ∈ I is
dij. Undercovering and overcovering are allowed. The cost of undercovering



Constraints

activity j ∈ W \ Fi at period i ∈ I is c−
ij by unit of undercovering and the cost

of overcovering activity j ∈ W \ Fi at period i ∈ I is c+
ij by unit of overcovering.

The following sections present four ways of modeling this problem. The first
model is a compact assignment MIP formulation that does not exploit the MIP
regular constraint nor the MIP grammar constraint. The second model uses the
MIP regular constraint and the third and fourth, the MIP grammar constraint.

7.2 A compact assignment MIP model

Decision Variables

xeij =
{

1, if employee e ∈ E covers activity j ∈ J at period i ∈ I,
0, otherwise.

Work Regulation Rules

Rule 1:

xeij = 0, e ∈ E, i ∈ I, j ∈ Fi. (16)

Rule 2:

we =
{

1, if employee e ∈ E is working,
0, otherwise.

∑

j∈J

xeij = we, e ∈ E, i ∈ I, (17)

12we ≤
∑

i∈I

∑

j∈W\Fi

xeij ≤ 32we, e ∈ E. (18)

Rules 3 and 4:

ue =
{

1, if employee e covers at least 6 hours of work activities,
0, otherwise.

∑

i∈I

∑

j∈W\Fi

xeij − 8ue ≤ 24, e ∈ E, (19)

∑

i∈I

∑

j∈W\Fi

xeij ≥ 23ue, e ∈ E, (20)

∑

i∈I

xeip = ue + we, e ∈ E, (21)

∑

i∈I

xeil = 4ue, e ∈ E. (22)

Rule 5:

veij =
{

1, if employee e ∈ E starts activity j ∈ J at period i ∈ I,
0, otherwise.



Constraints

veij ≥ xeij − xe(i−1) j, e ∈ E, i ∈ I, j ∈ W \ Fi ∪ {o} , (23)

veij ≤ xeij, e ∈ E, i ∈ I, j ∈ W \ Fi ∪ {o} , (24)

veij ≤ 1 − xe(i−1) j, e ∈ E, i ∈ I, j ∈ W \ Fi ∪ {o} , (25)

xei′l ≥ veil, e ∈ E, i ∈ I, i′ = i, i + 1, i + 2, i + 3, (26)

xei′ j ≥ veij, e ∈ E, i ∈ I, i′ = i, i + 1, i + 2, i + 3, j ∈ W \ Fi.

(27)

Rule 6:

veij ≤ 1 −
∑

j′∈W\Fi−1

xe(t−1) j′ , e ∈ E, i ∈ I′, j ∈ W \ Fi. (28)

Rule 7:

xeip ≤ 1 − xe(i−1) j, e ∈ E, i ∈ I′, (29)

xeip ≤
∑

j∈W\Fi−1

xe(i−1) j, e ∈ E, i ∈ I′, (30)

xeip ≤
∑

j∈W\Fi+1

xe(i+1) j, e ∈ E, i ∈ I′, (31)

veil ≤ 1 − xe(i−1)p, e ∈ E, i ∈ I′, (32)

veil ≤
∑

j∈W\Fi−1

xe(i−1) j, e ∈ E, i ∈ I′, (33)

veil ≤
∑

j∈W\Fi+1

xe(i+1) j, e ∈ E, i ∈ I′. (34)

Rule 8:

v−
ei =

⎧
⎨

⎩

1, if employee e ∈ E covers at least one working activity
beginning before period i ∈ I;

0, otherwise.

v+
ei =

⎧
⎨

⎩

1, if employee e ∈ E covers at least one working activity
beginning after period i ∈ I;

0, otherwise.

v−
ei ≤

∑

i−<i

∑

j∈W\Fi−

vei− j, e ∈ E, i ∈ I′, (35)
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v−
ei ≥

∑

j∈W\Fi−

vei− j, e ∈ E, i ∈ I, i− < i, (36)

v+
ei ≤

∑

i+>t

∑

j∈W\Fi+

vei+ j, e ∈ E, i ∈ I′, (37)

v+
ei ≥

∑

j∈W\Fi+

vei+ j, e ∈ E, i ∈ I, i+ > i, (38)

xeio ≤ (1 − v−
ei ) + (1 − v+

ei ), e ∈ E, i ∈ I. (39)

Demand Covering
∑

e∈E

xeij − s+
ij + s−

ij = dat, t ∈ T, a ∈ W \ Ft. (40)

Objective Function

min
∑

i∈I

∑

j∈W\Fi

(
∑

e∈E

cijxeij + c+
ij s+

ij + c−
ij s−

ij

)

. (41)

7.3 A MIP regular model

To observe the impact of modeling with the MIP regular constraint, we include
several rules of the problem in a DFA and we formulate the other rules and the
objective function as stated in Section 7.2. Work regulation rules 1 to 4 and demand
covering constraints are formulated as in the compact assignment model, and work
regulation rules 5 to 8 are included in the DFA. We use the DFA suggested by
Demassey et al. [13] for the same problem. The DFA presented in Fig. 7 is for the

Fig. 7 DFA �2 for two
activities
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problem with two work activities (a and b on the figure). It is easily generalized for
any number of work activities. Let us denote �n the DFA for the problem with n
work activities.

We insert a MIP regular constraint for each employee e ∈ E to the model. This
constraint ensures that the covering of the activities a ∈ A for each t ∈ T for any
employee e ∈ E is a word recognized by the DFA �|W|. To add this constraint, we
use the procedure presented in Section 4:

AddMIPRegular(�|W|, |T|, xe, we, M), ∀e ∈ E, (42)

where M is the model presented in the previous section without work regulation
constraints 5 to 8, and the variables xe and we have the same interpretation as in this
model.

7.4 MIP grammar models

To test the MIP Grammar constraint on this problem, we tried two different gram-
mars. First, we used a grammar encoding the DFA presented in Section 7.3 with the
same linear constraints as in the two previous models for work regulation rules 1 to
4 and the demand constraints. We call this model the partial MIP grammar model.
This grammar is obtained from the automaton � as described in Section 6.

Then, we used a context-free grammar presented in [28] that encodes all work
regulation rules. It only uses the demand constraints as side constraints. This second
grammar, leading to the complete MIP grammar model, can be expressed as follows
(for the sake of clarity, the grammar presented here is not in Chomsky normal
form, but note that any context-free grammar can be converted to Chomsky normal
form [17]):

R → O | o L → lL | l

A → aA | a G → A

P → GpG Q → PpG

F → PLP | QLG | GLQ S → RPR | RF R

where R, A, P, F, L, G, Q are non-terminals, S is the starting non-terminal.
Terminals o, p, l represent rest, break and lunch periods respectively. Terminal a
represents a work activity.

Several rules of the model are handled with a set of restrictions on the productions
of the grammar. These rules are dealt within the construction of the and/or graph. As
for the MIP regular model, a MIP grammar constraint is posted for each available
employee on a sequence length of |T| in both models.

7.5 Computational results

Experiments were run on a 2.4 GHz Dual AMD Opteron Processor 250 (where only
one processor was used) with 3 GB of RAM, using the MIP solver CPLEX 10.0.
Tables 1, 2, 3, and 4 present the results for the four formulations presented in the
last sections for the problem with one work activity and 12 available employees (10
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Table 1 Results for the
compact assignment MIP
model

Id LP MIP

LP value LP time |C| |V| MIP value MIP time

1 138,8952 36,53 29871 4040 172,6670 2142,17
2 162,9396 104,73 56743 5104 > >

3 168,8223 89,06 56743 5104 > >

4 131,6560 32,95 45983 4704 152,2240 3610,00
5 143,7443 63,61 40447 4360 171,9930 3610,01
6 129,0947 36,65 40447 4360 137,5180 3616,57
7 148,4681 38,26 45887 4608 > >

8 147,2002 90,49 56743 5104 > >

9 142,4836 27,15 36175 4156 182,5370 3607,76
10 145,9563 36,89 45983 4704 149,1810 3611,72

instances). In the tables, the Time and Value on the LP refer to the results for the
LP relaxation of the models. These results were obtained without CPLEX presolve to
allow comparing the LP relaxation lower bounds of the different models. The symbol
“>” means that CPLEX could not find the solution of the LP relaxation within a
time limit of 3600 s. The results on the MI P were obtained with CPLEX default
parameters on the given models. In particular, the branch-and-bound algorithm is
stopped when the objective value is within 1% of optimality, which explains the
differences in the MIP objective values of two models for which CPLEX stops within
the 3600 s elapsed time limit. The symbol “>” means that no integer solution was
found within this time limit. |C| and |V| are, respectively, the number of variables
and the number of constraints in the MIP model after CPLEX presolve.

Table 5 shows the results for the two work activity instances for the three formal
language based models, since the compact assignment MIP formulation did not
succeed in finding any integer solution on these instances. In Table 5, |C| and |V|
are, respectively, the number of variables and the number of constraints in the MIP
model after CPLEX presolve. Time is the time needed by CPLEX to find the optimal
solution for the models. The symbol “>” means that CPLEX could not find the
optimal integer solution within the time limit of 3600 s. Gap is the gap between the

Table 2 Results for the MIP
regular model

Id LP MIP

LP value LP time |C| |V| MIP value MIP time

1 138,8952 15,95 1491 1856 172,6670 1,03
2 162,9396 13,32 2719 3976 164,1370 40,09
3 168,8223 15,70 2719 3976 169,0120 64,64
4 131,6560 19,15 2183 3144 133,3830 46,39
5 144,4182 30,81 1915 2728 145,4640 14,03
6 133,0766 12,34 1915 2728 135,2180 3,28
7 149,2739 26,55 2183 3144 150,6810 5,99
8 147,2002 12,81 2719 3976 148,0470 131,77
9 142,4836 11,84 1759 2416 182,5370 16,14
10 146,2410 23,66 2183 3144 147,5030 20,22
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Table 3 Results for the partial
MIP grammar model

Id LP MIP

LP value LP time |C| |V| MIP value MIP time

1 138,8952 34,63 1683 2060 172,6665 1,16
2 162,9396 31,67 3040 4285 163,9210 66,26
3 168,8223 41,62 3040 4285 170,5663 46,74
4 131,6560 42,89 2459 3408 133,1414 98,00
5 144,4182 52,52 2143 2956 145,2850 21,83
6 133,0766 57,56 2143 2956 135,1286 1,56
7 149,2739 44,03 2456 3405 150,7675 53,82
8 147,2002 47,63 3040 4285 148,0467 263,43
9 142,4836 27,46 1957 2614 182,4833 12,91
10 146,2410 37,19 2458 3408 147,6853 19,28

initial LP lower bound, Z LP, and the value of the best integer solution found Z MI P

at the end of the solving process:

Gap =
(

Z MI P − Z LP

Z LP

)
× 100.

The symbol “>” in the Gap column means that no integer solution was found within
the time limit.

Note that the three models using formal languages lead to a faster computation
than the compact assignment MIP model on all instances in our benchmarks. In
particular, the multi-activity case cannot be handled by the compact assignment
model.

The LP relaxation bounds for the MIP regular and the partial MIP grammar
models are the same, as explained in Section 6. However, the computation times
between the two models are often quite different. Globally, it seems that the MIP
regular model leads to faster computations than the partial MIP grammar model.
Observe that the LP relaxation bounds of these two formulations are never worse
than the LP bounds of the compact assignment model, and are stronger on 4 out of
the 10 instances.

The MIP regular and the partial MIP grammar models both lead to faster
computation time than the complete MIP grammar model. However, the idea of

Table 4 Results for the
complete MIP grammar model

Id LP MIP

LP value LP time |C| |V| MIP value MIP time

1 > 3612,35 2727 6356 172,6665 7,42
2 > 3610,68 35419 190480 > >

3 > 3615,64 35419 190480 > >

4 > 3614,92 19163 84672 133,0630 1850,38
5 > 3609,11 10387 41464 145,8830 322,57
6 > 3618,18 10387 41464 134,8178 130,21
7 > 3618,83 19163 84672 151,2082 1662,75
8 > 3611,39 35419 190480 > >

9 > 3614,71 5503 21580 182,5370 1015,10
10 > 3610,10 19163 84672 147,0870 1313,28
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Table 5 Results for the two work activity instances

Id MIP regular Partial MIP grammar Complete MIP grammar

|C| |V| Time Gap |C| |V| Time Gap |C| |V| Time Gap

1 3111 5084 228,07 0,00 2727 4436 > > 8570 25363 2826,40 0,00
2 3779 6192 2870,20 0,99 3299 5472 277,48 1,00 18634 87215 1952,58 0,00
3 4475 6412 1541,15 0,74 3643 5656 464,27 0,74 28938 185427 > >

4 3571 7512 169,96 0,80 3863 6552 > 3,05 21298 92195 > >

5 3879 5668 > 11,52 3223 4804 > 99,99 24174 144327 > >

6 3199 6116 1288,56 0,43 3483 5408 82,72 0,08 22646 118099 > >

7 5799 4972 29,94 0,41 2839 4336 > 53,85 8874 33195 > >

8 4595 9740 > 4,96 5019 8456 2731,12 0,00 39782 237691 325,08 0,70
9 4595 7680 > 3,64 3971 6624 > 6,11 28042 146291 > >

10 4667 7584 1108,23 0,87 4127 6756 58,12 0,89 34846 229475 > 100,00

having all the constraints of a problem in a single structure such as the and/or graph
can lead to specific solution methods like a local search framework [26].

Some constraint programming based approaches addressed the problem studied
here. The results on the MIP regular models are competitive with those of the
branch-and-price approach described in [13]. Indeed, as reported in [13], for the
one work-activity problems, 8 instances are solved to optimality by the branch-and-
price with an average of 144 s of computation time, while for the two work-activity
problems, 8 instances are solved to optimality by the same approach with an average
execution time of 394 s. Menana and Demassey [22] succeed in finding the lowest
cost schedule for one employee for up to 50 work activities. Kadioglu and Sellmann
[18] tested an incremental arc-consistency algorithm for context-free grammars on an
simplified version of the problem presented here, with the objective of minimizing
the number of employees, without taking into account overcosts and undercosts.
They found the optimal solution for the 10 one-activity instances with an average
of 9 s of computation time and for 7 out of 10 two-activity instances with an average
of 9 s of computation time as well.

8 Conclusion

We presented two new MIP modeling approaches to express constraints on se-
quences of decision variables. These approaches are inspired by two CP constraints
using formal languages: the regular constraint and the grammar constraint. The
MIP version of the regular constraint uses an automaton to model the rules on
the sequence of decision variables and transform it into a set of linear constraints
representing a network flow problem in the graph. The MIP version of the grammar
constraint uses an and/or decomposition of the parsing tree of all the sequences
accepted by a context-free grammar and translates the logical clauses associated with
the graph into linear constraints on 0-1 variables.

From a modeling point of view, both approaches allow the design of complex rules
on sequences of variables to be handled with formal languages tools (an automaton
or a context-free grammar) instead of directly into linear constraints. This process
generates automatically a set of linear constraints that can be managed by any MIP
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solver. With this approach, the modeling of many complex rules is simplified and
experimental results show that the resulting formulations can be strong.

Despite its interesting structure, the complete MIP grammarmodels does not lead
to competitive computation times. We will explore two research avenues to address
this issue. First, in a context where all employees are identical, we will study an
implicit grammar based model using a single and/or graph to represent all employees,
which reduces significantly the model size and allows us to tackle multi-activity
problems. Also, we are looking into the use of complete MIP grammar models
as subproblems of a column generation framework to handle large-scale problems,
including those where employees must be distinguished.
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